首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   232篇
  国内免费   138篇
测绘学   58篇
大气科学   121篇
地球物理   292篇
地质学   479篇
海洋学   63篇
天文学   95篇
综合类   21篇
自然地理   38篇
  2024年   2篇
  2023年   6篇
  2022年   12篇
  2021年   12篇
  2020年   30篇
  2019年   22篇
  2018年   19篇
  2017年   40篇
  2016年   40篇
  2015年   39篇
  2014年   49篇
  2013年   55篇
  2012年   26篇
  2011年   60篇
  2010年   48篇
  2009年   80篇
  2008年   69篇
  2007年   55篇
  2006年   69篇
  2005年   52篇
  2004年   44篇
  2003年   36篇
  2002年   39篇
  2001年   29篇
  2000年   37篇
  1999年   29篇
  1998年   29篇
  1997年   21篇
  1996年   21篇
  1995年   14篇
  1994年   20篇
  1993年   15篇
  1992年   9篇
  1991年   9篇
  1990年   7篇
  1989年   6篇
  1988年   6篇
  1987年   2篇
  1985年   1篇
  1980年   2篇
  1978年   6篇
排序方式: 共有1167条查询结果,搜索用时 15 毫秒
91.
The modeling of thermal emission from active lava flows must account for the cooling of the lava after solidification. Models of lava cooling applied to data collected by the Galileo spacecraft have, until now, not taken this into consideration. This is a flaw as lava flows on Io are thought to be relatively thin with a range in thickness from ∼1 to 13 m. Once a flow is completely solidified (a rapid process on a geological time scale), the surface cools faster than the surface of a partially molten flow. Cooling via the base of the lava flow is also important and accelerates the solidification of the flow compared to the rate for the ‘semi-infinite’ approximation (which is only valid for very deep lava bodies). We introduce a new model which incorporates the solidification and basal cooling features. This model gives a superior reproduction of the cooling of the 1997 Pillan lava flows on Io observed by the Galileo spacecraft. We also use the new model to determine what observations are necessary to constrain lava emplacement style at Loki Patera. Flows exhibit different cooling profiles from that expected from a lava lake. We model cooling with a finite-element code and make quantitative predictions for the behavior of lava flows and other lava bodies that can be tested against observations both on Io and Earth. For example, a 10-m-thick ultramafic flow, like those emplaced at Pillan Patera in 1997, solidifies in ∼450 days (at which point the surface temperature has cooled to ∼280 K) and takes another 390 days to cool to 249 K. Observations over a sufficient period of time reveal divergent cooling trends for different lava bodies [examples: lava flows and lava lakes have different cooling trends after the flow has solidified (flows cool faster)]. Thin flows solidify and cool faster than flows of greater thickness. The model can therefore be used as a diagnostic tool for constraining possible emplacement mechanisms and compositions of bodies of lava in remote-sensing data.  相似文献   
92.
The paper describes prediction of thermal conductivity in terrestrial soil media. The model operates statistically by probability of occurrence for contacts between particular fractional compounds. It combines physical properties, specific to particular compounds, into one apparent conductance specific to the mixture. The concept of substituting grain compounds by hypothetical spheres is an essential tool to control porosity by the number of spheres, their radii and probability of contacts between them. The spheres are equal in radii. The spheres substitute compounds, regardless of the phase state. Control of particular phase states is possible by means of specific properties assigned to the spheres, at the input to the model. Performance of the model is successfully proved for many diverse terrestrial soil media in a wide range of bulk density, composition, water and water vapour content. Only the compounds of sand decline from the expected values and require introducing a correction to the thermal conductivity of sand grains. One possible explanation is that the thermal conductivity of sand is uncertain. Nevertheless, the model is useful and worth extending beyond terrestrial purposes.  相似文献   
93.
William B. Moore 《Icarus》2006,180(1):141-146
Models of tidal-convective equilibrium for Europa's ice shell are computed using a laboratory-derived composite flow law for ice. Volume diffusion creep is found to dominate the flow law at equilibrium, and thus the thickness of the shell is strongly dependent on the poorly known grain size of the ice. This grain size is, however, constrained to be less than a few millimeters if equilibrium is achieved at the current eccentricity. Europa's ice shell cannot be thinner than about 16 km in equilibrium at present, since tidal dissipation cannot generate enough heat in such a thin shell to balance the heat transport. No conductive equilibria are found; this is likely due to the fact that most of a conductive shell must be cold if temperature gradients are to be large enough to carry the heat. A minimum eccentricity of about 0.0025 (about 1/4 the present value) below which there are no equilibria is also found.  相似文献   
94.
95.
Ralph D. Lorenz 《Icarus》2006,182(2):559-566
The Huygens probe lost heat to its cold environment during its descent through Titan's atmosphere and after landing. Here I report measurements of the probe's thermal behavior and comparison with ground tests (1) to provide a context for other scientific investigations, such as the release of volatiles from the landing site, and (2) to place constraints on Titan environmental parameters directly, such as the thermal conductivity of the surface material and the strength of winds at the surface. Near-surface winds are constrained to be less than 0.2 m s−1, and probably much less.  相似文献   
96.
We investigate the response of conductive and convective ice shells on Europa to variations of heat flux and interior tidal-heating rate. We present numerical simulations of convection in Europa's ice shell with Newtonian, temperature-dependent viscosity and tidal heating. Modest variations in the heat flux supplied to the base of a convective ice shell, ΔF, can cause large variations of the ice-shell thickness Δδ. In contrast, for a conductive ice shell, large ΔF involves relatively small Δδ. We demonstrate that, for a fluid with temperature-dependent viscosity, the heat flux undergoes a finite-amplitude jump at the critical Rayleigh number Racr. This jump implies that, for a range of heat fluxes relevant to Europa, two equilibrium states—corresponding to a thin, conductive shell and a thick, convective shell—exist for a given heat flux. We show that, as a result, modest variations in heat flux near the critical Rayleigh number can force the ice shell to switch between the thin, conductive and thick, convective configurations over a ∼107-year interval, with thickness changes of up to ∼10-30 km. Depending on the orbital and thermal history, such switches might occur repeatedly. However, existing evolution models based on parameterized-convection schemes have to date not allowed these transitions to occur. Rapid thickening of the ice shell would cause radial expansion of Europa, which could produce extensional tectonic features such as fractures or bands. Furthermore, based on interpretations for how features such as chaos and ridges are formed, several authors have suggested that Europa's ice shell has recently undergone changes in thickness. Our model provides a mechanism for such changes to occur.  相似文献   
97.
This paper is the second of a series devoted to the observation and analysis of coherent structures in the cloudy Atmospheric Boundary Layer (ABL) such as horizontal rolls or thermal cells. In the first paper, the TRAC (Turbulence Radar Aircraft Cells) experiment which is the observational support of this investigation based on coupled radar-aircraft measurements, was presented along with an overview of the main results of this campaign held in June 1993 in France. Here the analysis is focused on the spatial characteristics (length-scale, orientation ... ) of the coherent structures, their temporal evolution and vertical distribution deduced from the radar reflectivity fields acquired in clear air at several levels for five different ABLs. For that, an original and efficient image processing method able to extract the major mode of the organisation was developed. These characteristics are examined in relation to the dynamic and thermodynamic state of the ABL using mean and turbulent information as observed by the in-situ aircraft. These experimental results are the basis of a future Large Eddy Simulation modeling of an organised ABL which is in progress and will be the concern of the third paper in the series.  相似文献   
98.
区域气候模式侧边界的处理对东亚夏季风降水模拟的影响   总被引:27,自引:3,他引:24  
在区域气候模式模拟中,侧边界的作用是引入大尺度强迫场。如何处理好侧边界,即大尺度强迫场和区域气候模式本身之间的关系问题,对于区域气候模式模拟和预报东亚夏季风降水具有重要意义。本文利用美国纽约州立大学Albany分校的区域气候模式(SUNYA-ReCM),设计了两种不同的侧边界处理方法,来探讨侧边界对东亚夏季风降水模拟的影响。驱动区域模式的大尺度强迫场来自欧洲中期天气预报中心(ECMWF)及热带海洋大气研究计划(TOGA)的分析资料场。试验结果表明:(1)当模式的区域较大时,采用较小的侧边界缓冲区会在缓冲区与模式内部的交界处产生不连续;扩大缓冲区并且考虑不同尺度强迫在垂直方向上的不同作用,可以避免这一缺陷。(2)更重要的是采用后一种方案,即减少了区域气候模式在模拟大尺度环流场方面所起的作用,使得模式更多地依赖侧边界来得到更真实的、对东亚夏季风降水起重大影响的一些气流,如副高、西南季风和南海季风,对东亚夏季风降水无论是在大小上还是在雨带位置的演变上都能进行更好的模拟。  相似文献   
99.
塔克拉玛干沙漠石油公路沿线风沙活动的气候环境   总被引:5,自引:2,他引:3  
塔克拉玛干沙漠石油公路沿线风沙活动是由塔木盆地内热能释放与冷空气入侵相互作用的结果。冷期,盆地内冷高压逆温作用较强,地面热能不足,使得风力和风沙活动强度弱;暖期,盆地内热源剧增,每当热能源饱和遇到冷空气入侵诱导,导致了强风及强风沙活动天气。可见,区内风沙活动及风成景观的塑造过程,主要是在暖干期进行的。  相似文献   
100.
An updated analysis of geothermal data from the highland area of eastern Brazil has been carried out and the characteristics of regional variations in geothermal gradients and heat flow examined. The database employed includes results of geothermal measurements at 45 localities. The results indicate that the Salvador craton and the adjacent metamorphic fold belts northeastern parts of the study area are characterized by geothermal gradients in the range of 6–17°C/km. The estimated heat flow values fall in the range of 28–53 mW/m2, with low values in the cratonic area relative to the fold belts. On the other hand, the São Francisco craton and the intracratonic São Francisco sedimentary basin in the southwestern parts are characterized by relatively higher gradient values, in the range of 14–42°C/km, with the corresponding heat flow values falling in the range of 36–89 mW/m2. Maps of regional variations indicate that high heat flow anomaly in the São Francisco craton is limited to areas of sedimentary cover, to the west of the Espinhaço mountain belt. Crustal thermal models have been developed to examine the implications of the observed intracratonic variations in heat flow. The thermal models take into consideration variation of thermal conductivity with temperature as well as change of radiogenic heat generation with depth. Vertical distributions of seismic velocities were used in obtaining estimates of radiogenic heat production in crustal layers. Crustal temperatures are calculated based on a procedure that makes simultaneous use of the Kirchoff and Generalized Integral Transforms, providing thereby analytical solutions in 2D and 3D geometry. The results point to temperature variations of up to 300°C at the Moho depth, between the northern Salvador and southern São Francisco cratons. There are indications that differences in rheological properties, related to thermal field, are responsible for the contrasting styles of deformation patterns in the adjacent metamorphic fold belts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号